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By using a previously developed analytic expression for the radial distribution
function of hard spheres, a simple analytic equation of state (EOS) for fluids
with a continuous Lennard-Jones potential is established based on Ross’s varia-
tional perturbation theory. The main thermodynamic quantities have been ana-
lytically derived, the resulting expressions are surprisingly simple, the variational
procedure is greatly simplified, and the calculations are absolutely convergent.
The numerical results are compared with the Monte-Carlo data and the original
Ross variational theory. It is shown that the precision of the analytic EOS is as
good as the original non-analytic one, and their applicable range is believed
identical. A comparison with the recently proposed mean-sphere-approximation
theory shows that the analytic equation of state developed here has wider
applicability and precision.

KEY WORDS: analyticity; equation of state; statistical mechanics; variational
perturbation theory.

1. INTRODUCTION

Perturbation theories such as the Barker–Henderson (BH) [1], the Weeks–
Chandler–Anderson (WCA) [2] theories and the Ross theory [3] are most
frequently used in research on the thermodynamic properties of fluids both
at normal conditions and at conditions with high temperature and high
density. The perturbation theories require knowledge of the equation of



state (EOS) and the radial distribution function (r.d.f.) of a reference hard-
sphere fluid. For this fluid, the Carnahan–Starling (CS) EOS [4] combines
simplicity and accuracy. As for the r.d.f., there are available analytical
expressions for the r.d.f. from the solution of the Percus–Yevick (PY)
integral equation [5, 6]. However, although the Laplace transformation of
the PY r.d.f. is simple enough, its expression in coordinate space is too
complicated to be convenient for practical applications. This results in the
perturbation schemes having manifestly failed to provide a generally ana-
lytic and applicable EOS even for the simplest square-well or Sutherland
fluids. Theories developed subsequently prefer the numerical table given by
Troop and Bearman rather than the analytic PY expression [7], such as
the mode expansion theory for electrolyte solutions [8] and renormaliza-
tion theory for simple fluids [9]. Moreover, it is known that the PY solu-
tion is not sufficiently accurate, particularly for radial distances close to
contact. Therefore, a considerable number of procedures have been devel-
oped to improve the r.d.f. obtained from integral equation theories [10–14].
In most cases, the resulting r.d.f. becomes more complicated than the
PY expression or even nonanalytical, which makes its use impractical,
particularly in the context of perturbation theories.

In Ref. 15, Largo and Solana developed a semi-empirical analytic
expression for the r.d.f. of hard spheres, and they have developed an ana-
lytic equation of state (EOS) for the square-well [15] and Sutherland
fluids [16] based on the BH perturbation theory. However, they have not
carefully selected the form of their expression for the r.d.f. of hard spheres;
the developed expression has not used any information from the CS EOS,
so it cannot reproduce the CS EOS, and the expression is too complicated
with only moderate precision. It contains 128 terms, which seems excessive,
and the resulting EOS even for the simplest Sutherland fluid contains at
least 250 terms.

Very recently, we developed an alternative analytic expression for the
r.d.f. of hard spheres [17]. The expression has successfully overcome the
shortcomings of Largo and Solana’s expression, and combined the simplic-
ity, accuracy and analyticity in it. In the same work, we have developed an
analytic EOS for Sutherland fluids; the EOS only contains about twenty
terms, and its simplicity is superior to the one developed by Largo and
Solana [16]. Here, we further develop an analytic EOS for Lennard-Jones
fluids. Since in BH and WCA perturbation theories, the numerical results
are very sensitive to the effective diameter of the reference fluid [16], we
would use the Ross variational theory [3] for which the effective diameter is
well defined and is chosen as that value minimizing the Helmholtz free energy.

The Ross variational theory is one of the most accurate perturbation
theories. It has been widely used in research on shock-compressed properties
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of materials [18, 19]. Its main disadvantage lies in the variational proce-
dure being too time-consuming and very inconvenient. In order to over-
come these shortcomings, Tang et al. have alternatively developed a mean-
sphere-approximation (MSA) theory [20–22]. However, the MSA theory
also has some disadvantages that are more severe than the Ross theory.
The most important is that the MSA theory is inapplicable to fluids at high
temperature and density, and at other conditions, the theory only gives
results comparable with the Ross theory or even poorer. If the Ross theory
can provide an analytic EOS, it may have advantages compared to other
perturbation approaches. Although it may seem unimaginable to develop
an analytic EOS based on a variational theory [20–22], we can see that the
resulting analytic EOS developed in this paper is surprisingly simple and
the precision almost has not been lost. In Section 2, the analytic EOS
is developed, and in Section 3 the numerical results are presented and
discussed.

2. DEVELOPMENT OF ANALYTIC EQUATION OF STATE

In terms of the Ross perturbation theory [3], the excess Helmholtz
free energy can be expressed as follows:

F
NkT

=
F0

NkT
+

F1

NkT
+

F12(g)
NkT

(1)

where F0 is the excess free energy of the reference hard-sphere system, and
is usually obtained by CS EOS [3, 4], and

F1

NkT
=2prb F

.

d
f(r) g(r) r2 dr (2)

is the first-order perturbation. F12(g) is a function making Eq. (1) repro-
duce the Monte-Carlo inverse 12th-power results [3]. It is dependent on
the form of the r.d.f of hard spheres. By using the analytic expression for
g(r) developed in Ref. 17, the determined F12(g) is slightly different from
Ross’s [3] and is given by

F12(g)
NkT

= − (g/2+15g3/4) (3)

where g=prd3/6, and g is employed as the variational parameter that
minimizes the right-hand side of Eq. (1). Namely, g should be determined by

“

“g
1 F

NkT
2

T, r

=0 (4)
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Table I. Coefficients Contained in the Analytic Expression of Radial Distribution Function
of Hard Spheres in Eqs. (5) and (6)

n

m 0 1 2 3

1 2.5 − 0.2975 − 1.4243 0.4141
Amn 2 2 − 4.0464 − 2.1422 2.0767

3 0.5 − 6.3781 10.13 − 3.6507
1 − 0.34 − 0.3317 0.5555 − 0.1402

Bmn 2 1 2.8897 − 3.1078 0.6822
3 − 0.29 − 2.619 2.1554 − 0.3989

The analytic expression of g(r) developed in Ref. 17 is as follows

g(x)=˛0, (x < 1)

1+ C
3

m=1

gm

(1 − g)m gm(x), (1 [ x < 3)

1, (x \ 3)

(5)

In Eq. (5), x is the radial coordinate reduced by the hard sphere diameter d,
and

gm(x)=˛ C
3

n=0
Amn(x − x − 4)n, (1 [ x < 2),

C
3

n=0
Bmn(x − 256x − 7)n, (2 [ x < 3).

(6)

The coefficients Amn and Bmn have been listed in Table I.
The LJ potential has the form

f(r)=4e 51s

r
212

−1s

r
266 (7)

Substituting Eqs. (5) and (7) into Eq. (2), and introducing the variable
transformation r=dx, we obtain

F1

NkT
=8pr d3b e F

.

d

51s

d
212 1

x12 −1s

d
26 1

x6
6 g(x) x2 dx

=8pr d3b e F
.

d

51ge

g
24 1

x12 −1ge

g
22 1

x6
651+ C

3

m=1

gm

(1 − g)m gm(x)6 x2 dx
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or

F1

NkT
=48gbe C

3

m=0

gm

(1 − g)m
51ge

g
24

Qrm −1ge

g
22

Qam
6 (8)

where ge=prs3/6 is the reduced density. Qrm and Qam are auxiliary con-
stants defined by

˛Qr0=F
.

1

1
x10 dx=

1
9

Qa0=F
.

1

1
x4 dx=

1
3

(9a)

and

˛Qrm=F
.

1

1
x10 gm(x) dx=F

2

1

1
x10 gm(x) dx+F

3

2

1
x10 gm(x) dx

Qam=F
.

1

1
x4 gm(x) dx=F

2

1

1
x4 gm(x) dx+F

3

2

1
x4 gm(x) dx

(9b)

The values have been evaluated and listed in Table II.
Substituting Eqs. (3) and (8) into Eq. (1), and Eq. (1) into Eq. (4), the

equation to determine g can be derived as

4 − 2g

(1 − g)3 −
1
2

−
45
4

g2+48be C
3

m=0
Cm

gm

(1 − g)m+1=0 (10)

and

Cm=1ge

g
24

(m − 3+3g) Qrm −1ge

g
22

(m − 1+g) Qam (11)

Table II. Values of Coefficients Defined in Eq. (9)

m Qrm Qam

0 1/9 1/3
1 0.227675 0.425596
2 0.021796 − 0.190918
3 − 0.018935 0.047583
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Although Eq. (10) is a nonlinear algebraic equation, by using the Newton
iteration approach, its solution is insensitive to the initial value and is
absolutely convergent.

The compressibility factor can be derived as follows,

PV
NkT

=1+r
“

“r
1 F

NkT
2

T
=1+ge

“

“ge

1 F
NkT

2
T

=1+ge
“

“ge

1 F
NkT

2
T, g

+
“

“g
1 F

NkT
2

T, ge

· ge
“g

“ge

Considering Eq. (4), the third term in the equation equals zero, and we
obtain

PV
NkT

=1+ge
“

“ge

1 F
NkT

2
T, g

=1+ge
“

“ge

1 F1

NkT
2

T, g

=1+48gbe C
3

m=0

gm

(1 − g)m
51ge

g
24

4Qrm −1ge

g
22

2Qam
6 (12)

The equation to evaluate the excess internal energy of the system is

U
NkT

=b
“

“b
1 F

NkT
2

r

=b
“

“b
1 F

NkT
2

g

+
“

“g
1 F

NkT
2

T, ge

b
“g

“b

Considering Eq. (4), the second term in the equation also equals zero, and
the equation is changed to

U
NkT

=b
“

“b
1 F

NkT
2

g

=b
“

“b
1 F1

NkT
2

g

=
F1

NkT
(13)

By using these equations, all other thermodynamic quantities can be
evaluated analytically. For example, the excess entropy of the system is

S
Nk

=
U

NkT
−

F
NkT

= −
F0

NkT
−

F12(g)
NkT

(14)

and the excess Gibbs free enthalpy is

G
NkT

=
F

NkT
+

PV
NkT

− 1=
F0

NkT
+

F12(g)
NkT

+48gbe C
3

m=0

gm

(1 − g)m
51ge

g
24

5Qrm −1ge

g
22

3Qam
6 (15)
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Now we determine the second virial coefficient. The virial expansion is
as follows

PV
NkT

=1+Br
2
3

prs3+Cr
12

3
prs322

+ · · ·

=1+Br(4ge)+Cr(4ge)2+ · · ·

Br is the second virial coefficient divided by 2s3/3; it can be determined by
the equation

Br=
1
4

lim
ge Q 0

1
ge

1 PV
NkT

− 12 (16)

Substituting Eq. (12) into Eq. (16), we obtain

Br=24c0be(2Qr0c2
0 − Qa0) (17)

where

c0= lim
ge Q 0

(ge/g) (18)

Its value can be calculated from Eqs. (10) and (11).

3. NUMERICAL RESULTS AND DISCUSSION

From the expressions derived in the previous section, we have cal-
culated the compressibility factor, excess internal energy, and the configu-
rational free energy. In Table III, the results are compared with the Monte-
Carlo (MC) data [3, 23] and Ross’ numerical results [3]. The table shows
that the agreement of our results with the MC data for some density and
temperature points is better than that of the Ross results, and in some
points is slightly poorer, but the overall agreement is almost identical.
Table IV further gives the comparison of our results and Ross’ results with
MC data [3, 23] in the critical region. It is shown that the present analytic
theory compares favorably with these results, except near the critical point.

In Fig. 1, the calculated pressure and internal energy for three typical
temperatures are also compared with the MC data and the results from the
MSA theory [20]. It is shown that our results are almost completely in
agreement with the MC data points, but the MSA results have obvious
deviations from the MC data, and the deviations become larger for higher
temperature and density. For the temperature kT/e=5, the largest relative
error for the density considered is at least 10%, and for kT/e=100,
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Table III. Comparison of Lennard-Jones Thermodynamic Properties from Monte-Carlo
(MC), from Original Perturbation Theory of Ross (R), and from Present Theory (S) at High
Temperature and Density. (PV/(NkT) is the compressibility factor, U is the excess internal

energy, and F is the excess configurational free energy.)

PV/(NkT) U/(NkT) F/(NkT)

kT/e rs3 MC R S MC R S MC R S

100 0.2 1.22 1.22 1.22 0.036 0.034 0.034 0.21 0.20 0.20
0.4 1.51 1.50 1.51 0.085 0.081 0.083 0.45 0.44 0.44
0.5 1.68 1.67 1.68 0.115 0.111 0.114 0.58 0.56 0.57
0.666 2.00 2.01 2.02 0.175 0.173 0.176 0.82 0.80 0.81
1 2.95 2.96 2.96 0.361 0.376 0.358 1.39 1.38 1.39
1.333 4.36 4.40 4.38 0.648 0.652 0.647 2.13 2.13 2.14
1.4 4.76 4.76 4.74 0.734 0.729 0.722 2.31 2.30 2.31
2 9.50 9.56 9.55 1.767 1.779 1.774 4.36 4.36 4.36
2.222 12.10 12.26 12.29 2.346 2.385 2.391 5.38 5.39 5.39
2.38 14.46 14.56 14.64 2.887 2.909 2.929 6.22 6.25 6.25
2.5 16.29 16.54 16.69 3.304 3.356 3.398 6.92 5.95 5.96

20 0.2 1.27 1.26 1.26 − 0.005 − 0.010 − 0.008 0.23 0.24
0.4 1.67 1.65 1.67 0.009 0.001 0.004 0.53 0.53
0.5 1.93 1.92 1.93 0.026 0.018 0.021 0.69 0.71
0.666 2.51 2.51 2.52 0.083 0.074 0.075 1.03 1.05
1 4.46 4.49 4.45 0.348 0.343 0.334 1.98 2.00
1.333 8.00 8.09 8.06 0.942 0.958 0.948 3.43 3.43
1.765 16.68 16.75 16.93 2.65 2.65 2.69 6.45 6.46

5 0.2 1.17 1.15 1.16 − 0.202 − 0.200 − 0.198 0.12 0.12
0.5 1.82 1.82 1.82 − 0.474 − 0.488 − 0.487 0.45 0.47
0.666 2.67 2.67 2.65 − 0.584 − 0.592 − 0.598 0.80 0.81
1 6.34 6.49 6.45 − 0.456 − 0.448 − 0.461 2.08 2.08
1.279 13.44 13.46 13.59 0.435 0.413 − 0.432 4.16 4.16

2.74 0.2 0.99 0.96 0.97 − 0.440 − 0.410 − 0.408 − 0.04 − 0.06 − 0.05
0.4 1.20 1.14 1.15 − 0.865 − 0.855 − 0.853 − 0.01 − 0.05 − 0.03
0.7 2.59 2.57 2.51 − 1.424 − 1.454 − 1.468 0.38 0.30 0.30
0.8 3.61 3.65 3.58 − 1.562 − 1.577 − 1.594 0.65 0.57 0.57
0.9 5.14 5.21 5.16 − 1.609 − 1.622 − 1.638 1.05 0.97 0.96
1 7.37 7.37 7.38 − 1.525 − 1.559 − 1.567 1.58 1.52 1.51
1.1 10.17 10.30 10.39 − 1.351 − 1.352 − 1.348 2.31 2.26 2.25

it reaches 30%. It has been shown that the analytic Ross theory is fast and
easy for calculations, and the precision is superior to the recently developed
MSA theory.

In the non-analytic Ross theory, it is difficult to calculate the second
virial coefficient and vapor-liquid equilibrium (VLE). However, based on
our analytic EOS, it is simple to make such calculations. In Fig. 2, we show
the comparison for the second virial coefficient calculated from our EOS,
BH theory [1], and exact results. It can be shown that the results from BH
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Fig. 1. Comparison of thermodynamic properties for Lennard-Jones fluids versus reduced
density (rs3) from Monte-Carlo (circles), from mean-sphere-approximation (MSA) theory
(crosses), and present theory (solid lines). PV/(NkT) is the compressibility factor, U/(NkT)
is the excess internal energy. (a) kT/e=5, (b) kT/e=20, (c) kT/e=100.
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theory are in better agreement with the exact results than our results at low
temperature, but the BH theory diverges at high temperature, and our EOS
gives very good results at high temperature. Considering that the contribu-
tion of the second virial expansion to thermodynamic properties at low
density is small, our results for the second virial coefficient can be seen as
having acceptable precision overall. By using the formula developed in
Section 2, we also made the VLE calculations. The determined reduced
critical temperature, density, and pressure are given by

kTc/e=1.497, rcs
3=0.326, Pcs

3/e=0.1896 (19)

and the calculated saturated vapor pressure, saturated liquid density, and
saturated vapor density can be well fitted by the following equations:

ln(Pss
3/e)=B1+B2(e/kT)+B3 ln(kT/e) (20)

rls
3=rcs

3+B1y+(B2+B3y1/2) y0.324 (21)

rgs3=rcs
3+B1y+(B2+B3y1/2) y0.324 (22)

The coefficients contained in these equations and the fitting error are listed
in Table V.

Fig. 2. Comparison of reduced second virial coefficients (Br)
for Lennard-Jones fluids versus reduced temperature (kT/e)
from exact calculations (crosses), Barker–Henderson (BH)
perturbation theory (squares), and present theory (circles).
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Table IV. Same as for Table III, but at Critical Region

PV/(NkT) U/(NkT) F/(NkT)

kT/e rs3 MC R S MC R S MC R S

2.74 0.65 2.22 2.17 2.12 − 1.37 − 1.38 0.20 0.21
0.75 3.05 3.06 2.99 − 1.52 − 1.54 0.42 0.42
0.85 4.38 4.36 4.30 − 1.61 − 1.63 0.75 0.75
0.95 6.15 6.20 6.18 − 1.61 − 1.62 1.22 1.21

1.35 0.10 0.72 0.75 0.75 − 0.58 − 0.42 − 0.42 − 0.29 − 0.25 − 0.24
0.20 0.50 0.50 0.51 − 0.88 − 0.88 − 0.50 − 0.49
0.30 0.35 0.27 0.28 − 1.55 − 1.38 − 1.37 − 0.80 − 0.75 − 0.73
0.40 0.27 0.12 0.12 − 1.90 − 1.89 − 0.98 − 0.96
0.50 0.30 0.14 0.11 − 2.50 − 2.43 − 2.44 − 1.16 − 1.18 − 1.17
0.55 0.41 0.23 0.19 − 2.70 − 2.71 − 1.26 − 1.25
0.65 0.80 0.70 0.63 − 3.23 − 3.24 − 1.35 − 1.35
0.75 1.73 1.68 1.60 − 3.70 − 3.72 − 1.33 − 1.35
0.85 3.37 3.39 3.36 − 4.01 − 4.10 − 1.15 − 1.17
0.90 4.58 4.60 4.60 − 4.19 − 4.22 − 4.24 − 0.91 − 0.98 − 1.00
0.95 6.32 6.08 6.12 − 4.23 − 4.31 − 4.33 − 0.67 − 0.75 − 0.77

1.00 0.75 0.58 0.45 0.37 − 5.23 − 5.26 − 2.66 − 2.68
0.85 2.27 2.33 2.31 − 5.84 − 5.87 − 2.63 − 2.65
0.95 3.50 3.73 3.74 − 6.25 − 6.29 − 2.32 − 2.35

0.81 0.801 0.06 0.07 0.03 − 7.07 − 7.08 − 7.10 − 4.00 − 4.03
0.8839 1.95 226 2.21 − 7.71 − 7.68 − 7.72 − 3.99 − 4.03

0.75 0.70 − 1.71 − 1.87 − 1.98 − 6.76 − 6.72 − 6.75 − 4.17 − 4.26 − 4.28
0.80 − 0.53 − 0.48 − 0.53 − 7.71 − 7.70 − 7.74 − 4.47 − 4.56 − 4.60
0.84 0.37 0.42 0.42 − 8.05 − 8.06 − 8.09 − 4.53 − 4.62 − 4.65

0.72 0.835 − 0.08 0.02 − 0.01 − 8.40 − 8.39 − 8.43 − 4.95 − 4.98
0.85 0.40 0.43 0.40 − 8.52 − 8.56 − 4.96 − 5.00
0.9158 2.25 2.69 2.61 − 9.08 − 9.03 − 9.09 − 4.93 − 4.97

Table V. Coefficients Contained in Fitting Expressions in Eqs. (20) and (22)

Eqs. B1 B2 B3 D%

(20) 3.144 − 6.972 − 0.371 0.30
(21) − 0.1891 0.2883 0.6526 0.33
(22) 1.6508 − 0.2291 − 1.7088 4.60
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The MC simulation data of VLE for the LJ fluid have been given in
Refs. 24 and 25. The data for the critical point are

kTc/e=1.309, rcs
3=0.307, Pcs

3/e=0.1303

By comparing these quantities with Eqs. (19), we find the agreement
between these equations is not good. In Fig. 3, we compared the saturated
vapor pressure given by Eq. (20) with the MC data [23, 24]. It is shown
that the agreement is very good. The VLE properties from Eqs. (21) and
(22) have been compared with the MC data [24, 25] in Fig. 4. The figure
shows the difference is fairly large, especially near the critical point. We
think the tendency is in accordance with Table III. Since Tables II and III
show that the thermodynamic properties from our EOS are in good
agreement with the non-analytic Ross theory, we may impute the inac-
curacy near and at the critical point not to the procedure for the
establishment of our EOS, but to the Ross theory itself. Thus the range of
validity of the EOS in Eq. (12) should eliminate the critical range as did the
original Ross theory.

In summary, we have shown that, by using the analytic expression for
the radial distribution function of hard spheres previously developed, it is
possible to establish a simple analytic EOS for fluids with the continuous
Lennard-Jones potential based on a variational perturbation theory. The
precision of the analytic EOS is as good as the original non-analytic one.
The main thermodynamic quantities can be analytically derived, the
obtained expressions are surprisingly simple, and the variational calcula-
tions are absolutely convergent. The applicable range of the analytic theory

Fig. 3. Comparison of reduced saturated
vapor pressure (ln(Ps3/e)) for Lennard-
Jones fluids versus reduced temperature
(kT/e) from MC data (circles), and present
theory (line).
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Fig. 4. Orthobaric reduced saturated-
vapor and -liquid densities (rs3) for
Lennard-Jones fluids. Symbols: critical
points. Line with circle: MC simulation
results. Line with square: this work.

is as same as the original one. It is interesting and practically meaningful to
extend the procedure to other perturbation theories or potential systems.
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